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Abstract. We give short proofs of determinants of special Hessenberg matrices which have 
recently been published. 

  

1. Introduction. 

The papers [2]-[4] give representations of some numbers or polynomials as determinants of 
Hessenberg matrices. The purpose of this note is to give short and simple proofs of these 
results. 

The main tool is the following Lemma which has already been used in [1] for analogous 
problems. 
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Proof 
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matrix we get (1.2). 

 

2. Examples 

1)  The Bernoulli numbers can be defined by the symbolic formula 1 1( 1) [ 0]n nB B n      

which means 
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  If we write this in the form 
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2) The Euler numbers    2 0
1, 1,5, 61,1385,n n
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      can be defined by  
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If we write (1.2) in the form  
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we get the well-known determinant formula 
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3) Identity  (1.2) can also be written in the form 
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for odd n  and 
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By Lemma 1 identity (1.5) implies  (cf. [4]) 
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4) The Euler polynomials ( )nE x  are defined by ( ) ( 1) 2 .n
n nE x E x x    If we write 
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Lemma 1 then gives (cf. [2] and [4]) 
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 for 0 1,j i   ( 1, 1) 1,t i i    and ( , ) 0t i j  for 
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5) Define the Fibonacci polynomials ( )nF s by the recursion 1 2( ) ( ) ( )n n nF s sF s F s    with 

initial values 0 ( ) 0F s  and 1( ) 1.F s   

Then it is well known that  
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with ( , )t i i s , ( , 1) 1,t i i    ( , 1) 1t i i   and ( , ) 0t i j  else. 

By Lemma 1 this is equivalent with  1 1( ) ( ) ( )n n nF s sF s F s     for 2n   and 

2 1( ) ( ) 0F s sF s   and 1( ) 1.F s   

The main result of [4] is equivalent with 
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if ( , ) 1,t n n   ( , 1) ( 1) ,t n n n s     ( , 2) ( 1)( 2)t n n n n     for 2n  , (2,0) 1t    and 

( , ) 0t n j   for  all other values .j  

By Lemma 1 formula (1.9) is equivalent with  
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with 0 1M   and 1( 1) ( 1)! ( )j
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For 2n   formula (1.10) reduces to  
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For 0n   we get 0 1M   and for 1n   we also have 0 1(1,0) (1,1) 0.t M t M    
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